ME4-Cl₂
Electrochemical Chlorine Sensor

Manual
(Model: ME4-Cl₂)

Version: 1.2
Valid from: 2014-05-01

Zhengzhou Winsen Electronics Technology Co., Ltd
Statement

This manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD.

Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can’t spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers use it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes &etc, please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users’ comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD
ME4-Cl₂ Electrochemical Chlorine Sensor

ME4-Cl₂ chlorine gas sensor is constant potential electrolysis type. Oxidation-reduction reaction with chlorine gas and oxygen take place respectively on the working electrode and on the counter electrode. The process releases electric charge and generates current. The current is in direct proportion to the concentration of chlorine gas and conform to faraday's law. So the concentration of the target gas could be got by measuring the value of current.

Features

Low power consumption, high precision, high sensitivity, wide linear range, good anti-interference ability, excellent repeatability and stability.

Main Applications

It is used for chlorine gas detection in the occasions such as chemical engineering, medicine and environmental protection field.

Technical Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Gas</td>
<td>Chlorine Gas (Cl₂)</td>
</tr>
<tr>
<td>Detection Range</td>
<td>0~20ppm</td>
</tr>
<tr>
<td>Max range</td>
<td>250ppm</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>(1±0.25)µA/ppm</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1ppm</td>
</tr>
<tr>
<td>Response Time (T₉₀)</td>
<td>≤60S</td>
</tr>
<tr>
<td>Bias Voltage</td>
<td>0mV</td>
</tr>
<tr>
<td>Load Resistance</td>
<td>10Ω (recommended)</td>
</tr>
<tr>
<td>Repeatability</td>
<td><2% Output value</td>
</tr>
<tr>
<td>Stability (month)</td>
<td><2%</td>
</tr>
<tr>
<td>Output Linearity</td>
<td>Linear</td>
</tr>
<tr>
<td>Zero drift (-20°C~40°C)</td>
<td>≤0.2ppm</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-20°C~50°C</td>
</tr>
<tr>
<td>Humidity range</td>
<td>15%~90%RH No condensation</td>
</tr>
<tr>
<td>Pressure range</td>
<td>standard atmospheric pressure</td>
</tr>
<tr>
<td>Lifespan</td>
<td>2 years</td>
</tr>
</tbody>
</table>

![Sensor Structure](image)
Description of sensor characters

Fig 2. Responce and Resume

Fig 3. Linearity

Fig 4. Sensor output at different temperature

Fig 5. Zero sensor output at different temperature

Basic Circuit
Cross Interference
ME4-Cl₂ sensor also can respond to other gases besides target gas Cl₂. Following data are the response characteristics of the sensor to interferential gases at certain concentration for your reference.

<table>
<thead>
<tr>
<th>Interferential Gas</th>
<th>Concentration/ppm</th>
<th>ME4-Cl₂/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂S</td>
<td>15</td>
<td><3</td>
</tr>
<tr>
<td>CO</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>NO</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>SO₂</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>HCN</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>H₂</td>
<td>400</td>
<td>0.1</td>
</tr>
<tr>
<td>C₂H₄</td>
<td>400</td>
<td>0.1</td>
</tr>
<tr>
<td>HCl</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>CO₂</td>
<td>5%</td>
<td>0</td>
</tr>
<tr>
<td>NH₃</td>
<td>20</td>
<td>0.1</td>
</tr>
</tbody>
</table>

8. Application Notes
- Sensor shall Avoid organic solvent, coatings, medicine, oil and high concentration gases;
- All ME Sensors shall not be encapsulated completely by resin materials, and shall not immerse in pure oxygen environment, otherwise, it will damage the function of sensor;
- All ME sensors shall not be applied in corrosive gas environment, or the sensor will be damaged;
- Please test the sensitivity of gas sensors in clean atmosphere;
Sensors Shall be avoided to face the gas, which flow directly from front side;

To avoid to bend and break of pins;

Blowhole of the sensor should not be blocked and polluted, which will cause the sensitivity decrease;

Excessive impact or vibration should be avoided;

Do not use the sensor when the shell is damaged;

It takes some time for the sensor to return to normal state After applied in high concentration gas;

Do not take apart the sensor, otherwise electrolyte leakage can cause sensor damage;

Working electrode and reference electrode of the sensor shall be in short circuit when stored.;

To preheat over 48hs before using and soldering forbidden;

Note: To keep continual product development, we reserve right to change design features without prior notice.