Flammable Gas Sensor
（Model: MP-4）

Manual

Version: 1.3
Valid from: 2014-05-01
Statement

This manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can’t spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers use it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes &etc, please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users’ comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD.
MP-4 Flammable gas Sensor

MP-4 model with advanced planar construction is comprised of heater and metal oxide semiconductor material of subminiature Al₂O₃ ceramic plate, fetch out electrode down-lead, encapsulation in metal base and cap. When the target gas exists, the sensor’s conductivity is more higher along with the gas concentration rising. Please use simple electrocircuit, convert change of conductivity to correspond output signal of gas concentration.

Features:

* Lower consumption
* Small size
* Fast response and resume
* Highest sensitivity
* Excellent stability and long life
* Easy circuit and big signal output
* Excellent selectivity

Application

It is widely used in domestic gas leakage alarm, industrial flammable gas alarm and portable gas detector.

Technical Parameters

<table>
<thead>
<tr>
<th>Model</th>
<th>MP-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Type</td>
<td>Flat surfaced</td>
</tr>
<tr>
<td>Standard Encapsulation</td>
<td>Metal cap</td>
</tr>
<tr>
<td>Target Gas</td>
<td>CH₄, Nature gas</td>
</tr>
<tr>
<td>Detection range</td>
<td>300-10000ppm</td>
</tr>
</tbody>
</table>

Standard Circuit Conditions

<table>
<thead>
<tr>
<th></th>
<th>Loop Voltage</th>
<th>Heater Voltage</th>
<th>Load Resistance</th>
<th>Heater Resistance</th>
<th>Heater consumption</th>
<th>Sensitive resistance</th>
<th>Concentration Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vc ≤ 24V DC</td>
<td>Vₜ 5V±0.1V AC or DC</td>
<td>Rₗ Adjustable</td>
<td>85Ω±15Ω (room tem.)</td>
<td>≤350mW</td>
<td>1KΩ ~ 20KΩ (in 5000ppm CH₄)</td>
<td>≤0.6(R₁₀₀₀ppm/R₅₀₀ppm CH₄)</td>
</tr>
</tbody>
</table>

Sensor character under standard test conditions

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tem. Humidity</td>
<td>20℃ ±2℃; 55%±5%RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard test circuit</td>
<td>Vc: 5V±0.1V</td>
<td>Vₜ: 5V±0.1V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preheat time</td>
<td>Over 48 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic circuit

This circuit shows the basic measuring circuit of sensor. Two voltages should be applied to this sensor, heating voltage (V_H) and circuit voltage (V_c). V_H is used for supplying a certain temperature which can be DC or AC. V_{RL} the voltage on the load resistance (RL) which connects to the sensor in series. V_c is supply the test voltage for RL and it must be DC.

Characterization

Typical Sensitivity Curve
The ordinate is resistance ratio of the sensor (R_s/R_0), the abscissa is concentration of gases. R_s means resistance in target gas, R_0 means resistance of sensor in clean air. All tests are finished under standard test conditions.

Typical temperature/humidity characteristics
The ordinate is resistance ratio of the sensor (R_s/R_{so}). R_s means resistance of sensor in 5000ppm CH4 gas under different tem. and humidity. R_{so} means resistance of the sensor in 5000ppm CH4 gas under 20℃/65%RH.
Long-term Stability
Test is finished in standard test conditions, the abscissa is observing time and the ordinate is V_{RL}.

Cautions

1. **Following conditions must be prohibited**

 1.1 Exposed to volatilizable organic silicon steam

 Sensing material will lose sensitivity and never recover if the sensor absorbs organic silicon steam. Sensors must avoid exposing to silicon bond, fixature, silicon latex, putty or plastic contain silicon environment.

 1.2 High Corrosive gas

 If the sensors are exposed to high concentration corrosive gas (such as H_2S, SO_2, Cl_2, HCl etc.), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation.

 1.3 Alkali, Alkali metals salt, halogen pollution

 The sensors performance will be changed badly if sensors be sprayed polluted by alkali metals salt especially brine, or be exposed to halogen such as fluorine.

 1.4 Touch water

 Sensitivity of the sensors will be reduced when spattered or dipped in water.

 1.5 Freezing

 Do avoid icing on sensor’s surface, otherwise sensing material will be broken and lost sensitivity.

 1.6 Applied higher voltage

 Applied voltage on sensor should not be higher than stipulated value, even if the sensor is not physically damaged or broken, it causes down-line or heater damaged, and bring on sensors’ sensitivity characteristic changed badly.

 1.7 Voltage on wrong pins

 As Fig8, Pin 1&2 connects to heater circuit, Pin 3&4 connects to measuring circuit; Under the requested conditions, heating and measuring can use the same power circuit.

 NOTE: the two pins near the protuberance mark is heating electrode.
2. Following conditions should be avoided

2.1 Water Condensation
Indoor conditions, slight water condensation will influence sensors’ performance lightly. However, if water condensation on sensors surface and keep a certain period, sensors’ sensitive will be decreased.

2.2 Used in high gas concentration
No matter the sensor is electrified or not, if it is placed in high gas concentration for long time, sensors characteristic will be affected. If lighter gas sprays the sensor, it will cause extremely damage.

2.3 Long time storage
The sensors resistance will drift reversibly if it’s stored for long time without electrify, this drift is related with storage conditions. Sensors should be stored in airproof bag without volatile silicon compound. For the sensors with long time storage but no electrify, they need long galvanical aging time for stability before using. The suggested aging time as follow:

<table>
<thead>
<tr>
<th>Storage Time</th>
<th>Suggested aging time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than one month</td>
<td>No less than 48 hours</td>
</tr>
<tr>
<td>1 ~ 6 months</td>
<td>No less than 72 hours</td>
</tr>
<tr>
<td>More than six months</td>
<td>No less than 168 hours</td>
</tr>
</tbody>
</table>

2.4 Long time exposed to adverse environment
No matter the sensors electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc., it will influence the sensors’ performance badly.

2.5 Vibration
Continual vibration will result in sensors down-lead response then break. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

2.6 Concussion
If sensors meet strong concussion, it may lead its lead wire disconnected.

2.7 Usage Conditions
2.7.1 For sensor, handmade welding is optimal way. The welding conditions as follow:
Soldering flux: Rosin soldering flux contains least chlorine
homothermal soldering iron
Temperature: 250℃
Time: less than 3 seconds

2.7.2 If users choose wave-soldering, the following conditions should be obey:
Soldering flux: Rosin soldering flux contains least chlorine
Speed: 1-2 Meter/ Minute
Warm-up temperature: 100±20℃
Welding temperature: 250±10℃
One time pass wave crest welding machine

If disobey the above using terms, sensors sensitivity will be reduced.