

Statement

This manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers use it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes &etc, please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD

Flow Sensor

FR03

Version : 1.2

Issue Date: 2023.11.10

Zhengzhou Winsen Electronic Technology Co., Ltd

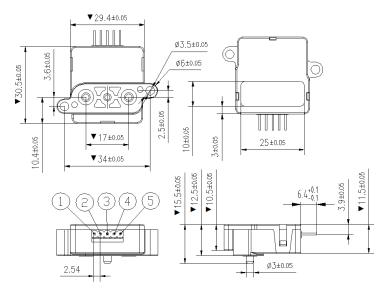
1.Profile:

3.2Electrical Index

FR03 flow sensor adopts MEMS Thermal principle to monitor the flow of pipeline gas medium. This product adopts low pressure l is widely used for all kinds of gas measurement.

Winson

A V O


炜盛科技 FR03-V0A-0. 5

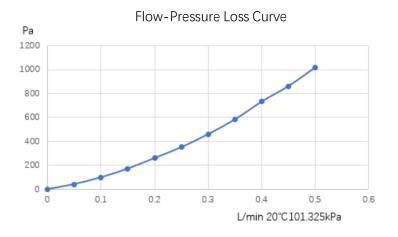
2. Features:

- High sensitivity; \diamond
- Very low pickup flow; ∻
- High Accuracy; ∻
- Low voltage loss; ∻
- Modular design; ∻
- High measurement repeatability; \diamond
- ∻ Surface mount structure

3. Technical Parameters:

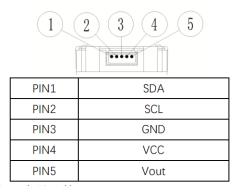
3.1Structure Parameters

	IN IN	NOUEIIN
loss design and	Flow	Ma
	measurement	M
		Re
ſ		Wor
		Bu
		Workir
	Output signal	Ou
		Ar
		IIC co
		Signa

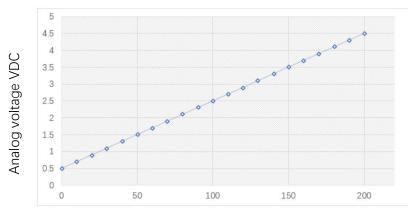

Model No.		FR03	
Flow	Maximum flow	500L/min @20℃ 101.325kPa	
measurement	Measurement	[25 , 500]mL/min: ±2.5%	
	accuracy	[0, 25) mL/min: ±0.5%FS	
	Repeatability	0.50%	
	Working Pressure	≤200kPa	
	Burst pressure	≥0.7MPa	
	Working Temperature	0°C ~ 50°C	
Output signal	Output method	Digital IIC or analog voltage	
	Analog signal	Linearity 0.5V ~ 4.5V	
	IIC communication	100kHz	
	rate	IOOKHZ	
	Signal refresh time	≤1ms	
	Signal response time	≤3ms	
	Electrical interface	PH2.0-5P plug-in connector	
Other	Working Voltage	DC5V ~ 14V	
	Working Current	≤30mA	
	Storage Temperature	-20°C ~ 80°C	
	Measurement Medium	Dry and clean non-corrosive gas	
	\triangle Pmax	≤2000Pa	

* Our company's flow sensor adopts 20°C 101.325kPa and air calibration by default. The production conditions are temperature 22±2°C, purification, (30%~35%) RH environment. If the user has special requirements, calibration will be carried out according to the customer's requirements.

*.. %FS refers to the full-scale accuracy, and % is the reading accuracy.



3.3 Flow Pressure Loss Curve



3.4 Interface Definition

The built-in connector model of the sensor is PH2.0-5P. The specific signal definitions are as follows:

3.5 Analog Signal Output & Flow Calculation

Mass flow L/min 20°C 101.325kPa

4 IIC Communications

4.1 IIC connection

This sensor adopts the standard IIC communication protocol, using the serial data bus (SDA) and serial time bus (SCL). The recommended pull-up resistor is $10k\Omega$.

4.2 IIC address

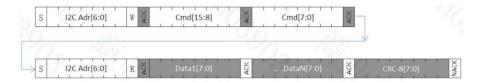
The default address is 0x40, followed by 1 bit of read (1) or write (0) data bit.

4.3 IIC communications

Transmission start signal (S) - When the clock line SCL is high, the data line SDA has a falling edge from high to low.

Transmission stop signal (P) - When the clock line SCL is high, the data line SDA has a rising edge from low to high.

Acknowledge (ACK) - SCL sends a positive pulse while SDA is low. Non-Acknowledge (NACK) - SCL sends a positive pulse while SDA is high.



4.4 Command set and data transfer sequence

Comma	Return/Write	Command	Remark
nd code	Number of bytes (bytes)	description	
0x1000	5	traffic	read instantaneous
		collection	flow value

4.5 Communication timing

Traffic collection

Datasheets:

Data1	current flow measurement value	HEX, high byte first
Data2	current now measurement value	
Data3	ragon vod	
Data4	reserved	-
Data5	CRC-8	Check value

Conversion factor table:

Media type	Conversion factor	Offset
Air	140	20000
Oxygen	142	20000
Other gases		

4.6 Digital flow calculation

Flow rate(L/min) = $\frac{\text{Flow measurement value - offset}}{Conversion factor}$

4.7 CRC check

```
CRC check uses CRC-8, the initial value is 0x00, and the polynomial is 0x131(x8 + x5 + x4 + 1). The sample code is as follows:
```

// Function name: Calc_CRC8

// Function : CRC8 calculation, initial value: 0x00, polynomial: 0x131(x8 + x5 + x4 + 1)

// Parameter : unsigned char *data: CRC Check array pointer

```
// unsigned char num: CRC Check data length
```

// Return : crc: calculated CRC8 value

unsigned char Calc_CRC8(unsigned char *data, unsigned char num)

```
unsigned char bit, byte, crc = 0x00;
```

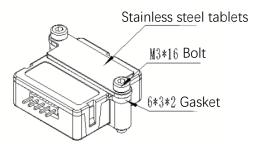
```
for(byte = 0; byte < num; byte++)
crc ^= data[byte];
for(bit = 8; bit > 0; --bit)
{
    if(crc & 0x80)
        crc = (crc << 1)^0x131;
        else</pre>
```

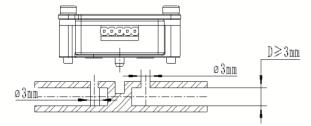
```
crc = (crc << 1);
```

```
}
```

{

return crc;


5. Install and use


Due to the low pressure drop across the sensor, the flow is not fully regulated by the sensor itself. The piping leading to the sensor will also affect the airflow distribution through the sensor, and the measurement results will be affected accordingly. In order to obtain the best measurement performance, it is recommended to configure laminar flow as much as possible. Details as follows:

5.1 The gas used must be purified to avoid dust, liquid, and oil. If necessary, a filter device can be installed in the air inlet end of the gas path.

5.2 The operating pressure of the medium should not exceed 2 times the maximum operating pressure of the product.

5.3 In order to ensure the measurement accuracy of the sensor in the application scenario, it is recommended to install it as follows.

6.Fault Diagnosis

6.1 Preliminary inspection

6.1.1 Check the opening of air source and inlet.

6.1.2 Ensure the correct connection of communication lines.

6.1.3 Check whether the medium pressure and ambient temperature meet the product technical indicators.

6.2 Fault Check

No.	Symptoms	Possible Causes	Solutions
1	When there is no ventilation, there is no signal output or a non-zero fixed value is output.	Sensor damaged Wire sequence error	Return to factory for repair Check whether the terminals are plugged in correctly
2 No signal changes during ventilation	Sensor installed backwards	Change installation direction	
		Wire sequence error	Check whether the terminals are plugged in correctly
		Sensor damaged	Return to factory for repair
	The sensor responds normally during ventilation, but there is a specific regular deviation from the reference instrument.	Reference standards are inconsistent	Check the measurement units used by reference meters and sensors and convert them
3	During ventilation, the sensor responds normally, and the signal has large and irregular beats, but the average value of the sampling signal within a period of time is close to the reference instrument.	There is turbulence in the installation pipeline	Increase the signal integration time or refer to 5.3 Optimizing the Pipeline

The sensor normally during v but there is a large deviation	entilation,	Sensor or assembly leaking	The elimination method gives priority to checking the reliability of the assembly, and secondly checks the air tightness of the sensor
During ventilation, t responds normally signal beats in a pattern, but the value of the sampli within a period o close to the instrument.	and the a specific average ing signal f time is	The air flow has periodic pulsation characteristics	Increase signal integration time

7. Product selection

Model	Illustrate
FR03-H0D	Output digital signal
FR03-H0A	Output linear analog signal

8. Disclaimer

Our company is not responsible for the damage caused by the following circumstances:

- Natural disasters.
- Misoperation or unreasonable use.
- Operate or store in unsuitable or harsh environment.
- Unauthorized modification or disassembly of products.
- Violent means lead to product damage.