

Intelligent Infrared CO₂ Gas Sensor

(Model: MH-711A)

Manual

Version: 3.5

Valid from: 5th, May 2016

Zhengzhou Winsen Electronics Technology Co., Ltd.

Statement

This manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to keep customers using it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes etc., please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD.

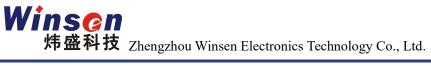
MH-711A Infrared CO2 Gas Sensor

1. Product Description

MH-711A is a universal type intelligent sensor to detect CO2 in air taking advantages of non-dispersive infrared (NDIR) principle. With high selectivity, no oxygen dependence, high performance and long lifespan features, MH-711A also has built-in temperature compensation feature. MH-711A is a compact and high-performance sensor based on infrared absorption of gas detection technology, micro-machining and sophisticated circuit design.

2. Characteristics

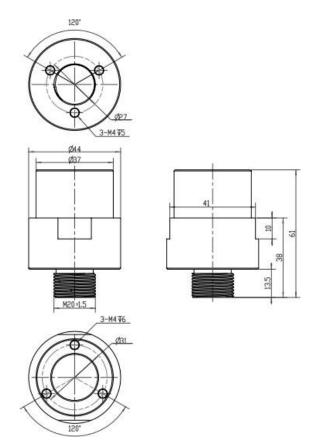
- Long lifespan
- High Sensitivity and resolution
- > 5V constant power supply, low power consumption
- > Output method: UART, analog voltage signal, etc.
- Quick response & Resume
- > Temperature compensation, excellent linear output
- Anti-poisons, anti-vapor interference
- Detect combustible gas concentration matching with flame-proof marked detector in area 1&2 explosive environments which mix of II A, II B, II C and T1-T6 flammable gases, vapors and air


3. Application

Widely used for industrial field instrumentation, industrial-process control and safety protection

4. Technical Parameters

Protected Class	IP65					
Ex-marking	Ex d II C T6 Gb					
Lifespan	>5 years					
Weight	350g					
Dimension	Ф44×61mm					
Working Humidity	0 to 95%RH, Non-condensing					
Working Temp.	-40°℃ ~70°℃					
Response Time	T ₉₀ < 30s					
Warm-up Time	3min					
Output Signal	0.4-2V DC					
Output Genel	IIC					
Measurement Range	0~30%VOL optional (view table 2)					
Interface Level	3.3V					
Average Current	< 100mA					
Working Voltage	4.5 V ~ 5.5V DC					
Target Gas	CO2					
Product Model	MH-711A					


Table 1 Technical Index



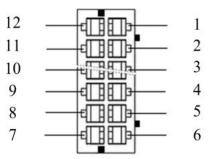

Detected Gas	Measurement Range	Accuracy	Remarks		
	0~2000ppm		Temperature compensation		
	0~6000ppm		Temperature compensation		
Carbon	0~1%VOL	+EOnnm + (E% roading	Temperature compensation		
Dioxide	0~3%VOL	±50ppm +/-5% reading	Temperature compensation		
(CO2 gas)	0~5%VOL		Temperature compensation		
	0~10%VOL		Temperature compensation		
	0-30%VOL	±15% reading	Temperature compensation		

Table 2: Measurement Range and Accuracy

5. Structural Drawing

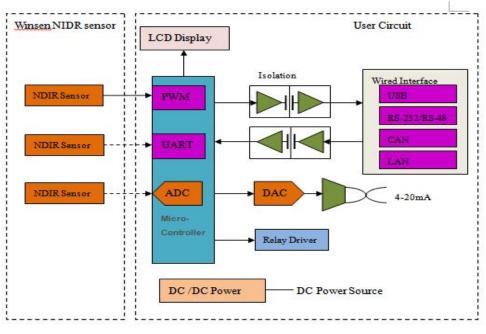


Figure 2: Pin Definition

Pin	Description
Pad1	Vin (input voltage 4.5V \sim 5.5V)
Pad4	GND
Pad5	Vout (0.4~2V)
Pad2	IIC(SCL) clock
Pad3	IIC(SDA) data
Pad6, Pad7, Pad8	Reserved, do not connect
Pad10, Pad11, Pad12	

Table 3: Definition of Pin

6. Application Circuit

Figure 3 Application Circuit

Explanations:

6.1: Analogue Voltage Output

Voltage output range 0.4 to 2V, relatively stands for 0 to F.S.

Pad1 connect with 5V supply, Pad4 connect with VSS and Pad5 connect with input side of ADC. Then warm-up the sensor, the Vout will show a voltage value which stands for the gas concentration. If the sensor malfunctions, the output voltage is 0V.

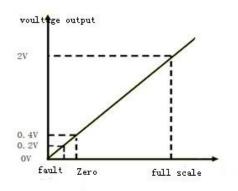


Figure 4 Analogue Voltage Output

6.2 IIC output

Hardware connection

The sensor Vin is terminated at 5V, GND is terminated at the power ground, the CLK of the user communication interface is terminated at the CLK of the detector, and SDA is terminated at the SDA of the detector. The detector can directly read the gas concentration value through the sensor's IIC interface (Note: The user's SCL and SDA signal lines must use a pull-up resistor of no more than 10K to ensure the normal operation of the IIC communication interface) without calculation

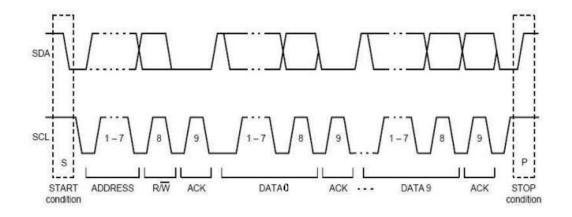
6.2.1 Communication Protocol

MH-711A is communicated through IIC bus. The module works basing IIC slave mode and can connects to external MCU, module address: 0x55, write operation address: 0xAA, read operation address: 0xAB. Every frame number data contains 10 bytes. Different host orders lead to different data and the last byte of data is the proof test value. The SCL clock frequency is recommend less than 10K.

1) Device Address

Address format: Highest seven digits are the module add of the sensor(0x55), the least significant digit is SDIR, 0 stand for Reading, 1 stand for Writing.

A7	A6	A5	A4	A3	A2	A1	W/R
1	0	1	0	1	0	1	0/1


Table 4: Address Format

IIC communication

Write address: 0xAA, Read address: 0xAB

2) Bus Description

IIC interface protocol is a special bus signal protocol, is composed of 3 parts - Start(S), Stop(P) and binary data, as shown below.At start,SCL is high,SDA is at falling edge.After that,send the slave add.After the seven add digits is the control read&write digits,choose the read&write operation as above picWhen the slave device recognizes the corresponding add information,it sends a responsive signal to main device and SDA is pulled down at the ninth clock cycle.At stop,SCL keeps high level,SDA is at rising edge.

Figure 5 IIC Sequence Chart

3) Command

Every frame number data of IIC communication command contains 10 bytes. Different host orders lead to different data and the last byte of data is the proof test value.

Table 5 Command List

0x96	Gas Concentration
0xA0	Calibrate zero point (ZERO)
0xAA	Calibrate span point (SPAN)

1	0x96	Gas Con	Gas Concentration Reading									
	0	1	2	3	4	5	6	7	8	9		
	Command									Check		
Send	Command									Code		
	0x96	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x6A		
return valu	ie											
	0	1	2	3	4	5	6	7	8	9		
Return	Module					High	Low	High	Low	Check		
	Status					Density	Density	Range	Range	Code		
EXP.	Return							•				

Gas Concentration Reading

Gas concentration= high density *256 + low density

Calibrate Zero

1	0xA0	Gas Concentration Reading											
	0	1	2	3	4	5	6	7	8	9			
Send	Comma nd									Check Code			
	0xa0	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x60			

www.winsentech.com

EXP.	A0 00 00 00 00 00 00 00 60										
	0	1	2	3	4	5	6	7	8	9	
Return											
EXP.	No value r	eturn									

Calibrate Span

1	0xAA	Gas Concentration Reading										
Send	0	1	2	3	4	5	6	7	8	9		
	Comma	SPAN Value								Check		
	nd									Code		
	Охаа	High	Low	0x00	0x00	0x00	0x00	0x00	0x00	Oxbb		
		Byte	Byte	0,000		0x00	0x00	0,00		UXDD		
EXP.	AA 13 88	00 00 00 00	00 00 BB	(Eg. calibra	ate 5000ppr	n, HEX: Ox	1388)					
	0	1	2	3	4	5	6	7	8	9		
Return												
EXP.	No value r	eturn										

6.2.2 Calibrate and Calculate

The checksum = (invert (byte0 + ... + 8)) + 1For example, Gas Concentration Reading

	Command Sent											
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9			
Command	-	-	-	-	-	-	-	-	Check			
									Value			
0x96	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x6A			

1. Add from Byte0 to Byte8: 0x96 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0x96

2. Invert: 0xff - 0x96 = 0x69

3. Add 1:0x69 + 0x01 = 0x6A after inversion

6.2.3 Example Program

C Language Calibrate & Calculate and Routine

```
char getCheckSum(char *packet)
{
    char i, checksum;
    for( i = 1; i < 9; i++)
    {
        checksum += packet[i];
    }
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
}</pre>
```

7. Notes For Maintenance

7.1 The sensor should be calibrated regularly. Recommended cycle time is once per 6 months.

7.2 Do not use the sensor in the high dusty environment for long time.

7.3 Please use the sensor with correct power supply.

Warning:

1. Sensors can only be used with detectors that have a flameproof mark and must not be used alone.

2. Do not disassemble or replace the sensor in hazardous locations. Sensor removal and replacement must be performed in a safe environment

3. It is forbidden to mount and fix in the way of perforating the sensor, such as punching holes.

4. The sensor operating voltage is 4.5 to 5.5V DC and the recommended voltage is 5V. Supply voltage exceeding 5.5V will cause permanent damage to the sensor, voltage below 4.5V DC sensor will not work

5. The sensor and the detector with explosion-proof mark can only be connected by flameproof thread, and must use the sealing ring seal that meets the explosion-proof requirements. The connection between the flameproof threads must take measures to prevent loosening

Zhengzhou Winsen Electronics Technology Co., Ltd

Add.: NO.299 Jinsuo Road, National Hi-Tech Zone, Zhengzhou, 450001 China Tel.: 0086-371-67169097 Fax: 0086-371-60932988 E-mail:sales@winsensor.com