

Wins@n ^{炜盛科技}

General Type Isolation-Film Pressure Sensor

(Model No. WPAK69)

Manual Version: 1.0

Date: Apr-8-2021

Zhengzhou Winsen Electronics Technology CO., LTD

Statement

This manual's copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our products. In order to have customers use it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes &etc., please in kind prevail.

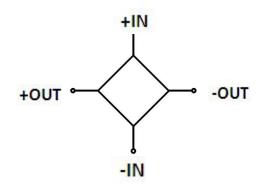
We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in case you need help during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD.

WPAK69 General Type Isolation-Film Pressure Sensor

Product Description


WPAK69 is clamp type pressure sensor with one-stage silicon oil filling technology. Pressure to the diaphragm is transmitted to the pressure chip through silicon oil, and the compensation circuit corrects the pressure signal to a linear electrical signal. The exposed stressed diaphragm on the end face of the clamp directly feels the pressure, which can prevent scaling, unsanitary, viscous pressure blockage and other problems. It is widely used in food, medicine, wine and other hygienic industries and in occasions where the measuring medium may scale.

Picture 1: Sensor

Equivalent circuit diagram

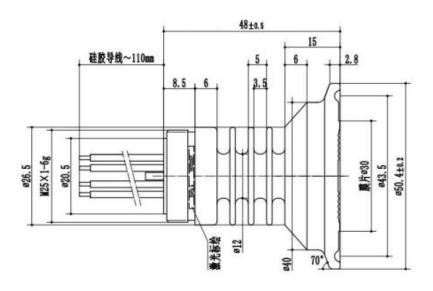
Four wire (Compensation)

Technical parameters

Detection range	-100kPa \sim 0 \sim 10kPa10MPa	
Pressure Reference	Gauge Pressure/Absolute Pressure/Sealed Gauge Pressure	
Power supply	1.5mA	Can be customized
input resistance	Constant current: $2k\Omega{\sim}5K\Omega$; Constant Voltage : $3k\Omega{\sim}18k\Omega$	
Electrical Connection	Pin or Wiring	
Compensation Temperature	0℃~60℃、-10℃~70℃	≤35kPa: 0°C~60°C, >35kPa: -10°C~ 70°C
Working Temperature	-40°C∼120°C	
Storage Temperature	-40°C∼125°C	
Insulation resistance	≥200MΩ/250VDC	
Response Time	≤1ms	Up to 90%FS
Measuring Medium	Liquid and Gas	
Mechanical vibration	20g (20~5000HZ)	
Shock Resistance	100g (10ms)	
Lifespan	10×10 ⁶ (Pressure Cycle)	

Structural Performance Index				
Diaphragm material	316L			
Housing Material	316L			
Infused Liquid	Silicone oil			
Oil	MCT(Medium chain triglycerides)			

Basic Parameter Index							
ltem	Condition	Min	Special	Max	Unit	Remarks	
Non-linear		-0.3	±0.25	0.3	%FS	Note(1)	
Hysteresis		-0.05	±0.03	0.05	%FS		
Repeatability		-0.05	±0.03	0.05	%FS		
Zero Point Output		-2	±1	2	mV		
Full-Range	1.5mA ,10kPa	20					
Output	1.5mA,other range	50	90	150	mV		
Zero Point	10kPa	-2	±1.5	2			
Temperature Drift	Other Detection Range	-1.5	±0.75	1.5	%FS	Note ⁽²⁾	
Sensitivity Drift		-1.5	±0.75	1.5	%FS	Note ⁽²⁾	
Heat Hysteresis		-0.075	±0.05	0.075	%FS	Note ⁽³⁾	
Stability		-0.3	±0.2	0.3	%FS/Year		


Notes:

(1) Based on BFSL least square method.

(2) In temperature r compensation ange,0 $^{\circ}C \sim 60$ and -10 $^{\circ}C \sim 70 ^{\circ}C$ is refer to 30 $^{\circ}C$;-20 $^{\circ}C \sim 85 ^{\circ}C$ is refer to 32.5 $^{\circ}C$.

(3) After high and low temperature, return to the reference temperature.

Dimension& Electrical Connection

Detection Ranges

Detection Range								
Range Code	Pressure Type	Detection Range	Overload Pressure	Burst pressure	O-ring			
10k	G	0 \sim 10kPa	300%FS	600%FS	NBR			
20k	G	0 \sim 20kPa	300%FS	600%FS	NBR			
35k	G、 A	0 \sim 35kPa	300%FS	600%FS	NBR			
70k	G	0 \sim 70kPa	300%FS	600%FS	NBR			
100k	G、 A	0 \sim 100kPa	200%FS	500%FS	NBR			
160k	G、 A	0 \sim 160kPa	200%FS	500%FS	NBR			
250k	G、 A	0 \sim 250kPa	200%FS	500%FS	NBR			
500k	G、 A	0 \sim 500kPa	200%FS	500%FS	NBR			
1M	G、A、S	0 \sim 1MPa	200%FS	500%FS	NBR			
1.6M	G、 A、 S	0 \sim 1.6MPa	200%FS	500%FS	NBR			
2.5M	G、 A、 S	0 \sim 2.5MPa	200%FS	500%FS	NBR			
4M	S	0 \sim 4MPa	200%FS	400%FS	NBR			
6M	S	0 \sim 6MPa	200%FS	400%FS	FKM			
10M	S	0 \sim 10MPa	200%FS	400%FS	FKM			

Cautions

■ The detection range should be within ± 30% FS for over range or down range application,.

The pressure types includs gauge pressure, absolute pressure and sealing pressure.

■ Please confirm the system's max overload. The maximum overload of the system should be less than the overload protection limit of the sensor, otherwise it may reduce the lifespan or bring damage to the core .

Do not touch the diaphragm with any hard objects, it may break the diaphragm.

The material and manufacturing process of the negative pressure core are different from the positive pressure core, the gauge pressure core cannot be used to replace the negative pressure core.

■ Please carefully read the manual before installation, to avoid damage to the product caused by wrong installation.

■Incorrect may cause danger and personal injury.

■ When pulling out the core from the shell, do not pull the wire and pin.